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Abstract

This paper investigates the analytical calculation of blade unsteady lift spectrum when interacting with a neighboring

obstruction, designed to control tonal noise. The approach used in this paper is to add a secondary unsteady lift mode, of

equal intensity but opposite in phase with the primary unsteady lift mode which radiates most of tonal noise, so that the

resultant of both primary and secondary modes is null. To control one unsteady lift mode (consequently an acoustic tone)

without affecting the harmonics of the controlled mode (consequently the harmonics of the acoustic tone to be controlled),

it is important for the secondary unsteady lift to be harmonically selective. We have therefore evaluated the harmonic

content of the blade unsteady lift generated by the proposed control obstructions. To this purpose, an original equation is

derived using the infinitesimal radial strips theory coupled with the one-dimensional Sears gust analysis. The spectrum of

the blade unsteady lift is then analyzed for three types of obstructions: a series of B-trapezoidal obstructions, a B-periodic

sinusoidal obstruction and a series of B-rectangular obstructions (where B is the number of blades). The use of salient

obstructions leads to a large unsteady lift harmonic content. An optimized wake width of the trapezoidal obstruction leads

to a low harmonic content rate of 5:5%. A Gaussian approximation of the measured inflow velocity profile generated by a

sinusoidal obstruction leads to a relatively low harmonic content rate of 18:8%, which indicates that most of the energy is

contained in the fundamental mode of the blade unsteady lift. Finally, a rotor/rectangular interaction shows that the use of

small-width rectangular obstructions leads to a higher harmonic content rate of 58:6%.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, a passive method is proposed for reducing the forces responsible for the tonal noise from
subsonic axial-flow fans using flow obstructions [1]. Tonal noise is mainly generated by the non-uniform flow
entering the fan, leading to fluctuating unsteady forces acting by the blades on the fluid. When decomposing
these forces using circumferential Fourier transform, it can be seen that few circumferential modes are
responsible for the tonal noise, especially for acoustically compact fans. Therefore, it is herein proposed to
adequately position a flow control obstruction in order to destructively interfere with the most radiating
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a circumferential Gaussian width para-
meter

aR radial Gaussian width parameter
B number of blades
c0 speed of sound, (m s�1)
C chord of the blade (m)
d width of rectangular obstruction (m)
D harmonic content rate (%)
F 0;F 00 lift per unit span (Nm�1) and per unit

area (Nm�2)
i imaginary number

ffiffiffiffiffiffiffi
�1
p

Jn;Kn ordinary and modified Bessel functions,
nth order

k0 acoustic wavenumber, k0 ¼ o=c0
(radm�1)

ky circumferential wavenumber ky ¼ w=R

(radm�1)
~L unsteady lift (N)

Mr rotational Mach number Mr ¼ OR=c0
n circumferential harmonic order of N,

w ¼ nN

nmax maximum circumferential harmonic or-
der of N

N number of rectangular or trapezoidal
obstructions, or number of lobes of the
sinusoidal obstruction N ¼ 2p=y0

p acoustic pressure (Pa)
R radius (m)
R1;R2 inner and outer radius of obstructions

(m)
Rm mean radius Rm ¼ 0:7� RT (m)
RH ;RT fan hub and tip radii (m)

S incompressible Sears function
Sc compressible Sears function
t time (s)
U tangential velocity of the rotor UðRÞ ¼

RO (m s�1)
v; ~V spatial and spectral transversal inflow

velocity (m s�1)
v0 circumferential uniform velocity term

(m s�1)
vm magnitude of the inflow velocity defect

(m s�1)
w circumferential order
wmax maximum circumferential order
x; r;j; a acoustic field point coordinate, spherical

coordinates
g rotor blade pitch angle (rad)
y circumferential angle (rad)
y0 angular period (rad)
yc phase variation of the chord along the

span (rad)
yg phase variation of the gust along the

span (rad)
Y angle of the obstruction (rad)
r0 density of air (kgm�3)
sy reduced frequency sy ¼ kyC=2
o angular frequency (rad s�1)
O angular velocity of the rotor (rad s�1)

Subscripts

m acoustic frequency index
p primary
s secondary
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primary circumferential mode of the fluctuating force. The concept of controlling tonal noise by adding flow
control obstructions has been investigated by a few authors [2–5]. The first preliminary theoretical study about
the potential of using flow control obstructions to control fan tonal noise was conducted by Nelson [3]. He
considered the use of 2N independent flow obstructions to control N modes in order to attenuate the fan tonal
noise generated by inlet flow distorsions. The amplitude of the wake deficit behind each obstruction is
calculated so that it minimizes a weighted sum of the sound power at the blade passage frequency (BPF) and
its harmonics. The risk of amplification of the harmonics of the BPF while attempting to control the sound
power at BPF was pointed out. The only modelling of the rotor/flow control obstruction was proposed by
Polacsek and Desbois-Lavergne [2]. They used a computational aeroacoustic model based on a Reynolds
averaged Navier–Stokes two-dimensional solver to estimate the unsteady force components on blades due to
the control cylindrical obstructions. The magnitude of several circumferential unsteady force modes is found
to be non-negligible so that the control of the BPF tone can increase the harmonics of the BPF. In previous
literature about the passive approach described above, there is no investigation on designing obstructions that
do not affect the upper harmonics while controlling an acoustic tone. Others [6] proposed several strategies for
reduction of turbomachinery fan noise such as the removal of the blade boundary layer and the addition of
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fluid through the rotor blade trailing edge to minimize the wakes shed by the rotor blades, thus making the
flow in the stator more uniform, reducing unsteady loading and radiated noise. An unsteady, thin shear layer
Navier–Stokes calculation on the stator was used to provide a numerical parametrization of the effects of
Gaussian wake widths generated by the rotor, and impinging in the stator vanes, on the amplitude of the
acoustic mode propagating in the duct. They concluded that a wake width approximatively equal to the rotor
pitch leads to maximize the amplitude of the BPF with respect to its higher harmonics. In this paper, by
contrast to Ref. [6], the wake is generated by the control obstruction and impinges inthe rotor. A simple
integral equation is derived in this paper to predict analytically the spectrum of the rotor blade unsteady lift
generated by the flow control obstructions.

The modelling of airfoil or blade unsteady lift is a topic of research since the beginning of the 20th century
with the analysis of a flat plate in a sinusoidally oscillatory motion [7]. Sears obtained a fundamental result on
the fluctuating lift experienced by an airfoil passing through a transversal sinusoidal gust [8], based on the
‘‘airfoil theory for non-uniform motion’’ [9]. Afterwards, models have been further investigated to take two-
dimensional gusts [10–12] and compressibility effect [13] into account. More recently, the Sears problem has
been revisited to include the effect of mean flow angle of attack and the airfoil camber on the gust response [14]
and more sophisticated methods to assess the importance of nonlinearity have been presented. An analysis on
the three-dimensional effects of blade force on the sound generated by an annular cascade in distorted flows
has also been investigated [16], which is particularly adapted for subsonic ducted-fans. Finally, in the last
decade, several numerical studies attempted to calculate the unsteady blade forces with the objective to predict
tonal noise [17–20]. The numerical approach has been discarded in this study, and instead a simpler and faster
analytical method based on the compressible approximation of the Sears function derived by Amiet [13] is
used. A periodic inflow distortion due to the interaction of rotating blades with a neighboring obstruction is
either imposed or fitted from experimental measurements. This inflow velocity serves as an input for the
calculation of the unsteady lift per unit span at a given radius. The unsteady lift is then calculated by
integrating the unsteady lift per unit span along the span using an infinitesimal strip theory, which can be done
by assuming that the problem can be locally treated as a one-dimensional problem. The sweep of the blades
and the phase of the gust along the span are taken into account. The calculation is performed into the spectral
domain since the periodic unsteady lift responsible for tonal noise is of interest. The final objective is to
evaluate the unsteady lift spectra generated by the interaction between the rotor and the control obstructions
and to choose the obstruction leading to the lowest harmonic content of the blade unsteady lift. From a
control point of view, the ideal case would be a pure sinusoidal flow field pattern, leading to a single
circumferential unsteady lift mode. In such a case, it is possible to control each unsteady lift mode
independently, and thus control an acoustic tone without affecting the other tones.

In this paper, the control approach is first conceptually described. Then, the Sears theory associated to the
infinitesimal strip theory is reviewed to calculate the unsteady lift generated by the interaction between a rotor
and an obstruction. Finally, numerical examples are given for various obstruction types (trapezoidal,
sinusoidal and rectangular obstructions). An optimization of the wake width generated by the trapezoidal
obstruction is also investigated. Circumferential wavenumber spectra of the blade unsteady lift produced by
the interaction between the rotor and the control obstructions are presented and a harmonic content analysis
is carried out to evaluate the ability of the control obstructions to selectively control a blade unsteady lift
mode.

2. Control approach

2.1. Tonal noise from subsonic fans

The rotor is considered as an array of rotating surfaces. When the fan tip Mach number is subsonic, as is the
case for automotive engine cooling fans investigated in this paper, the monopolar thickness noise and the
turbulent quadripolar terms can be neglected [23]. In order to examine the acoustic radiation of axial fans, it is
convenient to use the polar coordinate system ðR; y; y3Þ to describe the sources on the blades and the spherical
coordinate system ðr;j; aÞ to describe the acoustic free field, as shown in Fig. 1. Both coordinate system origins
are located at the center of the rotor. Following Blake [23], the lift per unit span on the blades F 0ðR; tÞ is
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Fig. 1. Sound radiation from a fan (coordinate systems).
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calculated by integrating the instantaneous pressure differential across the rotor F 00ðR; yb; tÞ along the chord
(�C=2RoyboC=2R). The forces are considered to be concentrated in the plane of the rotor at y3 ¼ 0. For a
circumferentially periodic inflow disturbance composed of wavelengths 2pR=w (where w ¼� �1;þ1½ is the
Fourier circumferential harmonic order of the disturbance), the circumferential and radial distribution of the
fluctuating lift on the rotor blades in a frame rotating with the rotor can be expressed as follows:

dLðR; y; tÞ
dR

¼
XB�1
b¼0

Xw¼þ1

w¼�1

d ~Lðw;RÞ

dR
e�iwOteiwyd y� b

2p
B

� �
(1)

where the index b refers to the blades and the index w refers to the circumferential harmonic order of the lift, B

is the number of blades and O is the rotation speed of the rotor in rad s�1. Eq. (1) represents a series of B line
forces spaced at regular intervals 2p=B around the circumferential direction. As opposed to what was
presented by Blake [23], the phase of the lift along the span (due to the sweep of the blade or the incident gust)
is taken into account in the circumferential harmonic decomposition of the unsteady lift per unit span
d ~Lðw;RÞ=dR. Then, Blake obtained the sound pressure pðx; tÞ, radiated by B blades at location x ¼ ðr;j; aÞ
(see Fig. 1), by integrating (over the span) the product of the lift per unit span d ~Lðw;RÞ=dR, projected over
circumferential mode w and the appropriate Green function for rotating dipolar sources in free field. The far-
field approximation (rbR) is given by

pðx; tÞ ¼
X1

m¼�1

X1
w¼�1

½Pðx;oÞ�w;me
�imBOt (2)

with

½Pðx;oÞ�w;m ¼
�ik0Beik0r

4pr
e�iðmB�wÞðp=2�jÞdðo�mBOÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Acoustic wave propagation

�

Z RT

RH

JmB�wðk0R sin aÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bessel function term

�
d ~Lðw;RÞ

dR|fflfflfflfflffl{zfflfflfflfflffl}
Unsteady lift per unit span

� cos g cos a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Axial forces
contribution

þ
mB� w

k0R
sin g|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Tangential forces
contribution

2
666664

3
777775dR (3)

The first summation of Eq. (2) represents the combination of multiple tones at angular frequencies o ¼ mBO.
The second summation represents the decomposition of the lift over circumferential harmonics w. In Eq. (3),
the first term describes the propagation of the acoustic waves, which have a wavenumber k0 ¼ o=c0 (where c0
is the speed of sound) and rotate at a circumferential phase velocity equal to mB=ðmB� wÞO. In the
integration over the radius (from the hub radius RH to tip radius RT ), the Bessel function term refers to the
ability of a circumferential mode w to radiate sound at the harmonic of rank m of the BPF BO. The term
d ~Lðw;RÞ=dR is the contribution of the circumferential mode w to the lift per unit span acting at a radius R.
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The terms in brackets weight the relative importance of axial and tangential forces, which are function of the
pitch angle g.

If the spatial extent of the fluctuating pressures on the rotor surface is less than a wavelength of the sound
generated, the fan effective area can be reduced to an approximate equivalent distribution of dipoles
distributed along a mean radius of the fan Rm ¼ 0:7� RT [23,25]. It is important to keep the unsteady lift per
unit span into the integral to take the sweep of the blade and the sweep of the gust into account along the span.
Considering the above simplifications, Eq. (3) can be written as

½Pðx;oÞ�w;m �
�ik0Beik0r

4pr
e�iðmB�wÞðp=2�jÞdðo�mBOÞ � JmB�wðk0Rm sin aÞ

� ~LðwÞ � cos g cos aþ
mB� w

k0Rm

sin g
� �

(4)

where ~LðwÞ is the lift per unit span integrated along the span:

~LðwÞ ¼

Z RT

RH

d ~Lðw;RÞ

dR
dR (5)

Note that the approximate equation (4) is exact and equivalent to Eq. (3) on the fan axis (a ¼ 0).

2.2. Principle of the passive adaptive control of tonal noise

From the Bessel function JmB�wðk0R sin aÞ in Eqs. (3) and (4), it can be seen that the lift circumferential
harmonic of order w ¼ mB is the major contributor to the tonal noise at the frequency mBO. Thus, controlling
this particular mode can lead to large tonal noise reduction in the whole space. In practice, coincidence
between w and mB is avoided by choosing a number of stator vanes different to the number of rotor blades for
example. However, one can use this coincidence to control the tonal noise at frequency mBO by superimposing
a secondary unsteady lift ~Lsðw ¼ mBÞ of equal intensity but opposite in phase relative to the most radiating
circumferential component ~Lpðw ¼ mBÞ of the primary lift, as shown schematically in Fig. 2. Assuming that
the primary and secondary inflow velocity field (thus the unsteady lift) can be linearly added, the total sound
field ptðx; tÞ is the sum of the primary sound field ppðx; tÞ and the secondary sound field psðx; tÞ:

ptðx; tÞ ¼ ppðx; tÞ þ psðx; tÞ

¼
X1

m¼�1

X1
w¼�1

ð½Ppðx;oÞ�w;m þ ½Psðx;oÞ�w;mÞe
�imBOt (6)
Resulting unsteady lift mode

Secondary unsteady lift modePrimary unsteady lift mode

Fig. 2. Principle of the wake generator to control the primary unsteady lift modes.
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The linear assumption is verified experimentally in Ref. [1] for the automotive fan under investigation. From
Eqs. (2) and (4), the total sound field can be written as a function of the sum of the primary unsteady ~LpðwÞ lift
and the secondary unsteady lift ~LsðwÞ:

ptðx; tÞ ¼
X1

m¼�1

X1
w¼�1

½H�w;mð
~LpðwÞ þ ~LsðwÞÞe

�imBOt (7)

where ~Lsðw ¼ mBÞ ¼ � ~Lpðw ¼ mBÞ, to control the acoustic radiation at frequency mBO and H is defined as
follows:

½H�w;m ¼
�ik0Beik0r

4pr
e�iðmB�wÞðp=2�jÞdðo�mBOÞJmB�wðk0Rm sin aÞ � cos g cos aþ

mB� w

k0Rm

sin g
� �

(8)

A solution to reduce the tonal noise from axial fans is thus to create the secondary interaction mode to
create a secondary non-uniform flow interacting with the rotor. This secondary non-uniform flow creates a
secondary unsteady lift radiating a secondary tonal noise opposite in phase with the primary tonal noise so
that the resulting sound is reduced. This can be done using adequately positioned flow control obstruction(s)
(also called wake generators by Polacsek et al. [2]). Thus, the control is passive but the position of the
obstruction must be adapted to adjust the magnitude and the phase of the secondary interaction mode in order
to minimize the tonal acoustic radiation. The adjustment of the distance between the control obstruction and
the rotor allows the secondary interaction mode magnitude to be adjusted while the adjustment of the angle of
the control obstruction allows the secondary interaction mode phase to be adjusted.

The flow control obstruction must be designed with care to generate the desired secondary unsteady lift
mode. Especially, it is important that the obstruction be selective to mainly generate one unsteady lift mode,
because other induced lift modes can give rise to sound radiation at higher frequencies. For example, the use of
sharp control obstruction(s), such as small diameter cylinders, as proposed in Refs. [2,5,31,32], leads to sharp
wakes and thus to a large spectral energetic content of the unsteady lift. The following sections of this paper
analyze the circumferential lift spectrum of various proposed control obstructions. The design of a control
obstruction geometry which is as spectrally selective as possible is the ultimate goal of the analysis.
3. Unsteady lift generated by control obstructions

This section aims at calculating the unsteady lift ~LðwÞ of Eq. (4) generated by various control obstruction
geometries. The results will be used to optimize the shape of the obstruction so that its circumferential
spectrum of the unsteady lift is selective. Before further investigating the modelling of the flow control
obstructions/rotor interaction, the unsteady airfoil theory is summarized. When an airfoil (or a blade) moves
into a non-uniform flow, the angle of incidence of the airfoil relative to the airflow is time varying, leading to
dynamic pressure distribution fluctuations.

Sears [8] has developed a linear theory for a flat plate of infinitesimal thickness encountering a gust in
incompressible flow. The formulation proposed by Sears relates the unsteady lift per unit span to the incident
downwash amplitude of the gust. Amiet [13] later on proposed a model for compressible flows. The
compressibility effects must be taken into account when the time for an acoustic wave to travel across the
blade chord is not negligible compared to the time for a fluid disturbance to cross the blade, which is the case
at high frequency. Once the blade unsteady lift per unit span is known along the span, the unsteady lift can be
calculated using the strip theory by integrating the unsteady lift per unit span along the span. The sweep of the
blades and the sweep of the gust along the blade span must be taken into account.

Based on the classical unsteady airfoil theory and the strip theory, a new simple integral equation is
obtained to calculate the rotor unsteady lift generated by the interaction between the rotor and the
obstructions, assuming that a Gaussian non-uniform inflow velocity is induced by the obstructions. The
variables of this formulation are related to the geometrical characteristics of the rotor and the obstructions,
and the characteristic of the non-uniform inflow velocity.
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3.1. The Sears function for a transversal gust

Let us consider a one-dimensional periodic gust with transversal velocity vðy; tÞ moving in the
circumferential y-direction at speed U , as illustrated in Fig. 3. The lift response per unit span acting at the
quarter-chord point to a transverse gust is given by the expression [23]:

d ~Lðw;RÞ

dR
¼ pr0C ~V ðw;RÞUðRÞSðsyÞ (9)

where r0 is the density of air, C is the blade chord, UðRÞ ¼ RO, is the tangential speed of the rotor at radius R,
sy ¼ kyC=2 ¼ wC=2R, is the reduced frequency and w is the circumferential order of the gust (number of gust
periods per circumference). Also, ~V ðw;RÞ is the circumferential harmonic decomposition of the inflow velocity
normal to the blade chord, such that

~V ðw;RÞ ¼
1

2p

Z 2p

0

vðy;RÞe�iwy dy (10a)

and

vðy;RÞ ¼
X1

w¼�1

~V ðw;RÞeiwy (10b)

Moreover, in Eq. (9), SðsyÞ is the incompressible Sears function defined as follows [25]:

SðsyÞ ¼
1

isy½K0ðisyÞ þ K1ðisyÞ�
(11)

where K0 and K1 are, respectively, the zeroth-order and first-order modified Bessel functions.
To account for the effect of blade camber, thickness and angle of attack of the blade, a second-order

analysis must be carried out [22]. However, in order to get explicit mathematical expression of the unsteady lift
and simplify the calculation of the unsteady lift spectra generated by the ingestion of control obstruction
wakes by the rotor, the linear analysis was considered sufficient. On the other hand, the inclusion of
compressibility effects does not much complicate the mathematical expression of the Sears function. If the
reduced frequency is large enough, such that the time for an acoustic wave to travel the chord is not negligible
in comparison to the time for a blade to travel an inflow velocity disturbance, a compressible Sears function is
recommended [22]. The low-frequency approximation of the compressible Sears function derived by Amiet
[13] is used:

Scðsy;MrÞ ¼
Sðsy=b

2
r Þ

br

½J0ðM
2
rsy=b

2
r Þ þ iJ1ðM

2
rsy=b

2
r Þ�e
�isyf ðMrÞ=b

2
r (12)

with

br �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

r

q

Fig. 3. The Sears problem, blade section submitted to a transversal gust.
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and

f ðMrÞ � ð1� brÞ lnMr þ br lnð1þ brÞ � ln 2

where Mr ¼ OR=c0, is the rotation Mach number, J0 and J1 are, respectively, the zeroth-order and first-order
ordinary Bessel functions. A criterion for the applicability of Eq. (12) is given by Amiet [13]: syMr=b

2
ro1, or

wo2Rð1�M2
r Þ=CMr. This condition is satisfied up to the circumferential order wmax ¼ 43, for a C ¼ 5 cm

blade chord, rotating at O ¼ 2p� 50 rad s�1, at a 10 cm radius. This condition therefore provides an upper
bound of the circumferential harmonic w in Eq. (9).
3.2. The infinitesimal strip theory

In this paper, instead of considering an oblique gust impinging the blades (with a radial and a
circumferential wavenumber, which is referred to as the two-dimensional gust problem), the fan rotor is
decomposed into infinitesimal radial strips along the span, which individually respond to a transversal gust. In
other words, at a given radius, the gust and the blade are considered of infinite span so that the gust
interaction problem can be treated as a one-dimensional gust problem, as in the previous section. The
unsteady lift per unit span (Eq. (9)) is then integrated along the span to yield the unsteady lift on the blade:

~LðwÞ ¼

Z RT

RH

d ~Lðw;RÞ

dR
dR

¼ pr0O
Z RT

RH

CðRÞR ~V ðw;RÞeiwðycðRÞ�ygðRÞÞScðsy;MrÞdR (13)

where RH and RT are, respectively, the hub and tip radii of the rotor. In the problem of upstream obstructions
generating circumferential inflow fluctuations, the transversal velocity of the gust ~V ðw;RÞ is the unknown in
Eq. (13). By approximating vðy;RÞ by a Gaussian function of y behind the obstructions, it is possible to
calculate its Fourier transform ~V ðw;RÞ. Since the transversal velocity is decomposed into infinitesimal strips,
the phase variation of the gust along the span ygðRÞ relatively to the phase of the chord along the span ycðRÞ

(due to the sweep of the blade) must be taken into account. In Fig. 4, four blades and four regularly spaced
obstructions are chosen to show the coordinate system used to described the sweep of the blades and the gust
along the span. A square shape of the obstruction is chosen for illustration purpose.
Fig. 4. Problem geometry.
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3.2.1. Spatial transversal velocity

Since the flow responsible for tonal noise is non-uniform but stationary, a deterministic periodic spatial
transversal velocity vðy;RÞ is imposed over the circumferential direction y. The flow is considered uniform in
the region without obstruction ½RH ;R1½ and �R2;RT �, where R1 and R2 are, respectively, the inner and outer
radii of the obstructions (cf. Fig. 4). Thus the calculation of Eq. (13) and the spatial Fourier transform ~V ðw;RÞ
of vðy;RÞ is only required in the interval ½R1;R2�. A Gaussian velocity profile is assumed behind the portion
occupied by the obstruction. The angular width of the Gaussian profile is related to the angle YðRÞ of the
obstruction at radius R, so that the transversal velocity can be written as follows:

vðy;RÞ ¼ v0ðRÞ þ vmðRÞ
Xþ1

n¼�1

e�ððy�ny0Þ=aðRÞYðRÞÞ2 ; R1XRXR2 (14)

where aðRÞ is the Gaussian width parameter, vmðRÞ is the magnitude of the inflow velocity defect and y0 is the
angular period of the obstruction(s) as defined in Figs. 4 and 5. The uniform velocity term v0ðRÞ can be
ignored in Eq. (14) since it does not contribute to the unsteady lift and sound radiation at low subsonic blade
speed. In Eq. (14), rather than considering the superposition of Gaussian inflow velocity only between 0 and
2p (a single cycle), we consider an infinity of Gaussians for an infinity of cycles (like an unrolled rotor
�1oyoþ1). This summation is then useful to simplify the expression of the inflow velocity by using the
Poisson formula.

The Gaussian inflow velocity distortion assumption is versatile since the magnitude and the angular width
of the Gaussian function can be adjusted as a function of the radius R to account for the distance of the
obstruction/rotor axial distance, the rotation speed of the fan, the aerodynamic shape of the obstruction.
Published inflow velocity measurements show Gaussian shape of the mean velocity profiles in the downstream
flow field of various obstructions in various operating conditions [26–29]. Experimental results reported later
in this paper (Section 4.2) also show the ability of a Gaussian function to approximate the measurement of the
wake velocity profile generated by a sinusoidal obstruction. However, for a large angular obstruction located
very close to the rotor, a flat top velocity profile would be more appropriate.

In order to simplify the calculation of the Fourier transform of the spatial transversal velocity, it is useful to
introduce the following variable:

A2ðRÞ ¼
y20

a2YðRÞ2
¼

4p2

a2N2YðRÞ2
(15)

where N is the number of obstructions regularly spaced over the circumferential direction and where the
Gaussian width parameter aðRÞ is considered independent of the radius R. Making use of the Poisson
summation formula:

Pþ1
n¼�1 f ðnÞ ¼

Pþ1
m¼�1

Rþ1
�1

f ðzÞe�2pimz dz, with f ðnÞ ¼ e�ððy�ny0Þ=aYðRÞÞ2 , the transversal
Fig. 5. Gaussian wake velocity defect generated by upstream angular segments of width YðRÞ.
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velocity can be rearranged after introducing the variable x ¼ Aðy=y0 � zÞ:Z þ1
�1

f ðzÞe�2pimz dz ¼ �
1

AðRÞ
e�2ipmðy=y0Þ�m2p2=A2ðRÞ

Z þ1
�1

e�ðx�imp=AðRÞÞ2 dx (16)

Since
Rþ1
�1

e�ðx�imp=AÞ2 dx ¼
ffiffiffi
p
p

[30], the expansion of the spatial transversal velocity over the circumferential
direction is

vðy;RÞ ¼ �vmðRÞ

ffiffiffi
p
p

AðRÞ

Xþ1
m¼�1

e�2ipmðy=y0Þ�m2p2=A2ðRÞ (17)

The spatial velocity profile behind the obstructions given by Eq. (17) is then Fourier transformed into the
circumferential spectral domain and Eq. (13) is used to obtain the unsteady lift of the rotor blades as a
function of the circumferential spectral components of the velocity.

3.2.2. Spectral transversal velocity

The Fourier transform ~V ðw;RÞ of the transversal velocity vðy;RÞ is given by Eq. (10a), where the
fundamental circumferential order is equal to the number of obstructions 2p=y0 ¼ N. All circumferential
orders appearing in Eq. (10b) will be multiples of N. Calculating the Fourier transform of Eq. (10a) over only
one angular period y0 leads to the following expression of the spatial Fourier transform of the transversal
velocity:

~V ðnN;RÞ ¼ �
vmðRÞ

ffiffiffi
p
p

AðRÞ

Xþ1
m¼�1

sincðpðmþ nÞÞe�m2p2=A2ðRÞ (18)

3.3. Unsteady lift integrated along the span

Eq. (18) is introduced into Eq. (13) with RH ¼ R1, and RT ¼ R2, to give the general expression of the
unsteady lift for the circumferential order w ¼ nN, caused by N regularly spaced obstructions generating
Gaussian wakes:

~LðnNÞ ¼ p3=2r0O
Xþ1

m¼�1

sincðpðmþ nÞÞ

Z R2

R1

vmðRÞ

AðRÞ
CðRÞRe�m2p2=A2ðRÞeiwðycðRÞ�ygðRÞÞScðsy;MrÞdR (19)

where the phase of the gust relative to the blade over the span is taken into account in the term einNðycðRÞ�ygðRÞÞ.
From Fig. 4, it can be seen that ycðRÞ depends on the sweep of the blade and that the origin of the angular
position is chosen so that ygðRÞ ¼ YðRÞ=2. Introducing Eq. (19) into Eq. (4) leads to the sound pressure field
generated by the interaction between the rotor and the flow control obstruction. At the best of the author
knowledge, the integral equation (19) is new.

The calculation steps from the spatial velocity profile to the unsteady lift generated by the control
obstructions are illustrated in Fig. 6. To illustrate the calculation steps, the inflow velocity was measured at six
radii (with hot wire anemometer) behind a sinusoidal obstruction. The velocity shown in Fig. 6a is an adjusted
Gaussian approximation of the wake measurement over the circumference and the wake measurements were
interpolated over the radius. The spatial velocity profile is then decomposed into strips and Fourier
transformed. Fig. 6b shows the circumferential Fourier transform of the spatial velocity as a function of R and
w, which serves as input data in Eq. (13). In Fig. 6b, the circumferential Fourier components of the velocity
~V ðw;RÞ ¼ 0, if wa6n. This second step is already taken into account in Eq. (19). Finally, the unsteady lift
spectrum (Fig. 6c) is obtained by solving the integral of Eq. (19) using the trapezoidal rule (128 radial elements
are considered). The infinite sum over m is truncated from m ¼ �50 to 50, which has been verified to ensure
convergence.

The magnitude of the Gaussian velocity profile vmðRÞ influences the unsteady lift magnitude (Eq. (19)) and
the magnitude of the radiated tones (via Eq. (4) for acoustically compact blades). For the prediction of the
radiated tone magnitude, vmðRÞ can be determined experimentally. Nevertheless, the relative magnitudes of the
unsteady lift spectral components are sufficient to characterize the shape of the unsteady lift spectrum. Thus,
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as long as the inflow velocity can be approximated by a Gaussian profile, vmðRÞ can be imposed arbitrarily. In
the following section, the magnitude of the unsteady lift spectral components ~LðnNÞ ðnX1Þ is normalized to
the magnitude of the first component of the unsteady lift spectrum ~LðNÞ in order to qualitatively compare the
spectra generated by various Gaussian widths of the velocity profile.

4. Numerical examples

Since the experimental investigation has been carried out in this paper for a 6-bladed automotive engine
cooling fan with equal blade pitches, regularly spaced obstructions along the circumference are proposed.
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The inner and outer radii of the rotor are, respectively, RH ¼ 6:25 cm and RT ¼ 15 cm. In the following
examples, the control obstruction is designed to control the BPF tone. Three types of obstructions are
considered here: a series of N ¼ 6 trapezoidal obstructions (Fig. 7a), a continuous N ¼ 6-periods sinusoidal
obstruction (Fig. 7b) and a series of N ¼ 6 rectangular obstructions (Fig. 7c). The three-dimensional shape of
the cylinders is not included in the model, i.e. the imposed Gaussian velocity behind cylindrical obstructions of
diameter d would be the same as the Gaussian velocity imposed behind rectangular obstructions of width d.
The angles YðRÞ (Fig. 4) of the obstructions at radius R are defined as follows:

YðRÞ ¼ Y ¼ Const:; R1pRpR2 Trapezoidal obstructions (20)

YðRÞ ¼ 2 sin�1
d

2R
; R1pRpR2 Cylindrical or rectangular obstructions (21)

YðRÞ ¼
2

N
cos�1

2R� R1 � R2

R2 � R1

� �
; R1pRpR2 Sinusoidal obstruction (22)

In the simulations presented here, the inner and outer radii of the obstructions are, respectively, R1 ¼ 8 and
R2 ¼ 12 cm. The values of YðRÞ in Eqs. (20)–(22) have to be introduced into Eq. (15) for the different
obstructions under investigation and the Gaussian width parameter a has to be arbitrarily imposed or fitted
from inflow velocity measurements in Eq. (15).

The circumferential component w ¼ B, of the primary unsteady lift is the most radiating at the BPF, as
discussed in Section 2. By adding the obstructions described in this section, a secondary flow is added.
Attenuation of the BPF tone is obtained when the circumferential component of the secondary lift w ¼ N, is
equal and opposite in phase to the circumferential component of the primary lift w ¼ N. However, the higher-
order circumferential components of the secondary lift w ¼ nN ðnX2Þ, should be as small as possible in order
to leave higher harmonics of the BPF unaffected by the control obstruction. Thus, the spectral content of the
unsteady lift generated by the control obstructions is of interest. In this respect, the harmonic content rate
D ð%Þ is proposed and defined by

D ð%Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼2 j
~LðnNÞj2Pnmax

n¼1 j
~LðnNÞj2

s
� 100 (23)

where nmax is related to the maximum circumferential order wmax in Eq. (19) through nmax ¼ wmax=N. The limit
nmaxp7, (wmax ¼ nmax � 6 ¼ 42), is imposed by the low frequency approximation of the compressible Sears
function when a series of N ¼ 6 obstructions is considered, as discussed in Section 3.1.
Fig. 7. The obstructions described in this paper: (a) 6-trapezoidal obstructions, (b) 6-periods sinusoidal obstruction, (c) six rectangular

obstructions.
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Note that an obstruction generating a purely sinusoidal circumferential inflow velocity distribution, thus a
purely sinusoidal unsteady lift, would provide the best selection of a given single frequency in the acoustic
spectrum of the rotor. In such a case, the harmonic content rate is D ¼ 0%. To control the m� BPF tone, the
number of regularly spaced obstructions must be adjusted such that the fundamental circumferential order of
the unsteady lift is w ¼ N ¼ mB.

Simulations are first reported for the rotor/trapezoidal obstruction interaction, to show the influence of the
product aY and the geometry of the blade on the unsteady lift (vmðRÞ is imposed). Then, the unsteady lift
generated by the rotor/sinusoidal obstruction interaction is calculated from experimental inflow velocity
measurements (vmðRÞ is measured). Finally, the unsteady lift generated by the rotor/rectangular obstruction
case is considered (vmðRÞ is imposed) and compared to the unsteady lift generated by trapezoidal and
sinusoidal flow control obstruction. In the following sections, we insist on the qualitative rather than
quantitative characterization of the unsteady lift spectra in order to provide a simple analytical tool to help the
design of obstructions with low harmonic content rate.

4.1. 6-Trapezoidal obstructions

The case of the 6-trapezoidal obstructions/rotor interaction is useful to study the influence of the Gaussian
width parameter a and the angle YðRÞ ¼ Y ¼ Cte, of the trapezoids. Eq. (15) shows that the parameter of
interest is the product aY, that is representative of the wake width (Fig. 5). By varying aY, it is possible to find
out an optimal value of aY so that the harmonic content rate D is minimal, as shown in Fig. 8.

Two blade geometries are considered: 35� trapezoidal blades and the swept blades of an actual automotive
fan under investigation in Ref. [1]. For the trapezoidal blades, the minimum of D ¼ 6:7%, and the maximum
of the ratio k ~Lð6Þk=k ~Lð12Þk ¼ 16, correspond to the same value aY ¼ 0:35 rad, which means that most of the
higher-order mode energy of the lift is contained in the first harmonic n ¼ 2. For the swept blades, the
minimum of D ¼ 5:5% and the maximum of the ratio k ~Lð6Þk=k ~Lð12Þk ¼ 18:8, also correspond to the same
value aY ¼ 0:35 rad. Thus, it is possible to adjust the angle Y of the trapezoidal obstructions or the Gaussian
width parameter a so that aY ¼ 0:35 rad.

A value of aY ¼ 0:1 rad is chosen to illustrate the influence of the trapezoidal obstructions on the
circumferential unsteady lift spectrum. In Fig. 9, v0 and vmðRÞ were, respectively, set to 0 and �1 in Eqs. (14)
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and (19). The corresponding spatial velocity defect and the spatial unsteady lift LðyÞ are shown in Fig. 9a and b.
The Gaussian wake assumption is particularly well adapted to this small values of aY (similar to the wake
measured by Staiger [28]). In Fig. 9b, the continuous line corresponds to the 35� trapezoidal blades and the
dashed lines correspond to the automotive swept blades.
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The imposed wake velocity profile generated when choosing the optimal product aY ¼ 0:35 rad is plotted in

Fig. 9c, where the dotted lines correspond to individual Gaussian velocity profiles e�ððy�ny0Þ=aðRÞYðRÞÞ2 (generated
by individual obstructions) and the continuous line corresponds to the sum of the individual velocity profilesPþ1

n¼�1 e�ððy�ny0Þ=aðRÞYðRÞÞ2 defined in Eq. (14). Low overlapping of the Gaussian wakes is observed for the

optimal value aY ¼ 0:35 rad. The spatial unsteady lift due to this imposed wake velocity profile is plotted in
Fig. 9d. It is clear that the lift fluctuation is almost sinusoidal.

The Gaussian overlapping at the large value aY ¼ 0:5 rad causes a strong velocity defect all around the
circumference, as shown in Fig. 9e, and the Gaussian wake approximation may not longer be valid. The
corresponding spatial unsteady lift shown in Fig. 9f.

In all cases, the magnitude of the unsteady lift is slightly larger for the trapezoidal blades and angular shift is
also observed between the trapezoidal and the swept blades. Indeed, in practice, the blades are swept to reduce
the unsteady lift by changing the phase along the leading edge when the encountered gust is radial (as it is the
case for many stators and the trapezoidal obstructions).

Fig. 10 shows the normalized unsteady lift spectrum ( ~Lðw ¼ 6nÞ= ~Lð6Þ, 1pnp7) associated to the optimal
wake width aY ¼ 0:35 rad, and to the values aY ¼ 0:1, and aY ¼ 0:5 rad. As observed in Figs. 8 and 9, the
harmonics of the fundamental circumferential order (w ¼ N ¼ 6) are more energetic in the case of
aY ¼ 0:1 rad, or aY ¼ 0:5 rad than in the case of aY ¼ 0:35 rad, for wp42; or np7. The harmonic content
rates are DaY¼0:5 ¼ 21:7%, DaY¼0:35 ¼ 5:5%, and DaY¼0:1 ¼ 29:1%. Consequently, localized and deep velocity
fluctuations correspond to the generation of many circumferential components in the lift spectrum. Therefore,
sharp obstructions (aY ¼ 0:1 rad) or sharp circumferential zones between obstructions (aY ¼ 0:5 rad) are not
appropriate to selectively control a circumferential mode of the lift. The ideal analytical case aY ¼ 0:35 rad
(D ¼ 5:5%) will be considered as the low limit of the harmonic content rate in this paper.

Numerical parametrization of effects of the wake width generated by the rotor on the unsteady stator
loading has been investigated by Waitz et al. [6] in turbomachines. They concluded that the Gaussian wake
width at the inlet plane of the stator must be approximatively equal to the rotor pitch to maximize the
amplitude of the BPF with respect to its harmonics (a 16

40
rotor-stator pitch ratio was under investigation in

Ref. [6]). In the present paper, the results of the optimization of the wake width aY generated by the
trapezoidal obstruction lead to a wake width at mid-height of the velocity defect (2aY ln 2 ¼ 28�, as indicated
in Fig. 5), which is a little smaller than the angle of the trapezoidal blades (35�). At the height vm=e of the
velocity defect, the wake width is 2aY ¼ 40� (Fig. 5), which is a little larger than the angle of the trapezoidal
blades (35�). Thus, the conclusion of Waitz et al. can also be applied to the case of stator (control obstruction)
wakes impinging in rotor blades.
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4.2. 6-periods sinusoidal obstruction

The mean wake velocity defect generated by the sinusoidal obstruction of Fig. 7b has been measured with a
single hot wire anemometer. The velocity measurements have then been used to approximate the coefficients
of the Gaussian function describing the velocity profile behind the obstruction. The hot wire was located at
various radial positions between the sinusoidal obstruction (in the upstream flow) and the rotor, near the
blade leading edges (0.5 cm). The hot wire anemometer was fixed and the sinusoidal obstruction was rotated
from �p=6 to p=6 (an angular period) by increments of 2�. The hot wire signal was acquired for 3.4 s,
corresponding to 159 revolutions of the fan rotating at 2800 revmin�1. The sampling frequency was set to
4800Hz to give 102 samples per revolution. The hot wire was aligned so that the voltage was maximum, which
corresponds to a wire perpendicular to the blade leading edge, thus, giving an estimation of the transversal
gust velocity (relative to the blade) generated by the sinusoidal obstruction.

Fig. 11 shows the measured mean velocity and the adjusted Gaussian approximation of the mean velocity at
different radii, defined by Eq. (14). Moreover, the following Gaussian function is also assumed for the radial
dependence of the inflow velocity magnitude:

vmðRÞ ¼ vme
�ðð2R�R1�R2Þ=aRðR2�R1ÞÞ

2

(24)

The best agreement between measured experimental data and the Gaussian approximation has been
obtained for a ¼ 0:36, aR ¼ 0:5, and vm ¼ 2m s�1. For simplicity, the circumferential width parameter a has
been assumed independent of the radial position R. The coefficient vmðRÞ of the approximated Gaussian
velocity function can then be introduced into Eq. (19). The angular sector YðRÞ of the sinusoidal obstruction
as a function of the radius R defined in Eq. (22), and the parameter a ¼ 0:36, are introduced in Eq. (15).
Table 1 shows the ratio k ~LðNÞk=k ~LðnNÞk (N ¼ 6, 1ono7) of the rotor unsteady lift spectrum generated by
the interaction between the sinusoidal obstruction and the rotor. The harmonics of the fundamental
circumferential unsteady lift order w ¼ 6 are significantly below the fundamental in the lift spectrum, leading
to a relatively small harmonic content rate D ¼ 18:1%. In Ref. [1], these ratios are indirectly estimated
through acoustical measurements up to the order n ¼ 4 (w ¼ 24). The sinusoidal obstruction therefore allows
to control a circumferential order of the rotor unsteady lift without too much affecting the higher harmonics.
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Table 1

k ~LðNÞk=k ~LðnNÞk ratio as a function of nN for the sinusoidal obstruction

nN 6 12 18 24 30 36 42

k ~LðNÞk=k ~LðnNÞk 1 5.3 39.6 342 7:1� 103 10:5� 103 15:5� 103
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In the next section, it is shown that the choice of narrow rectangular obstruction generates salient wakes,
leading to a broader lift spectrum.
4.3. Six small-width rectangular obstructions

The main disadvantage of choosing small-width obstructions is that the wakes generated by the
obstructions are very salient, leading to a high harmonic content rate of the unsteady lift.

This can lead to amplification of higher acoustic tones when controlling only the BPF as noted by Polacsek
et al. [2] using rods: for a sound pressure level attenuation of 8 dB at the BPF, amplifications of 6, 15 and 11 dB
were observed at the first, second and third harmonics of the BPF. The results presented by Neuhaus et al. [31]
also show that the use of cylinders leads to an increase of the upper harmonics while controlling the BPF. The
three-dimensional shape of cylinder is not included in the proposed model, i.e. the imposed Gaussian velocity
behind cylindrical obstructions of diameter d would be the same as the Gaussian velocity imposed behind
rectangular obstructions of width d.

A rectangular obstructions/rotor configuration using the 6-bladed rotor presented in this study and six
rectangular obstructions of 14mm in width is studied. The circumferential unsteady lift spectrum that it
generates is compared to the spectra already shown in this paper for other obstruction shapes. The
circumferential Gaussian width parameter a is set to 0.5. Moreover, no variation of the velocity profile is
imposed along the radial direction (aR !1), similar to the simulations carried out in Sections 4.1 for the
trapezoidal obstruction. In Fig. 12, the predicted unsteady lift spectrum generated by the rectangular
obstructions/rotor configuration is compared to the unsteady lift spectrum generated by the 6-trapezoidal
obstructions/rotor configurations (aY ¼ 0:35, 0:1 rad) and to the 6-sinusoidal obstruction/rotor interaction.

The unsteady lift spectra due to the rotor/rectangular obstructions interaction lead to a large harmonic
content rate (D ¼ 58:6%). The salient wakes generated by the small rectangular obstructions lead to a broad
lift spectrum. Thus, this solution is not selective and cannot be used to control only one mode without
affecting the other modes. To be selective, larger obstructions (in the circumferential direction) must be
chosen.
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5. Conclusions

A simple analytical formulation has been derived to predict the unsteady lift generated by the interaction
between a rotor and an obstruction, designed to control an acoustic tone generated by the rotor. For
acoustically compact fans, an acoustic tone corresponding to a multiple of the BPF is associated with
essentially a given circumferential mode of the blade unsteady lift; therefore, it is sufficient to control only this
most radiating unsteady lift mode to control each acoustic tone. The principle of the control is thus to add a
secondary unsteady lift mode, of equal intensity but opposite in phase with the primary unsteady lift mode so
that the resultant of both primary and secondary lift modes is null. To control one unsteady lift mode
(consequently an acoustic tone) without increasing the harmonics of the controlled mode (consequently the
harmonics of the acoustic tone to be controlled), it is important for the secondary unsteady lift to be
harmonically selective. The analytical formulation derived in this paper therefore provides a tool to simply
evaluate the ability of the control obstruction to control one tone without affecting the other tones. The
harmonic content rate of the unsteady lift generated by the proposed control obstructions can also be
optimized with the proposed model.

The numerical examples show that physically compact obstructions generate salient wakes and therefore
broad circumferential lift spectra. In such a case, controlling one lift mode can generate other undesirable
modes. However, better designed control obstructions, such as optimized trapezoidal obstructions or
sinusoidal obstructions, have a relatively low harmonic content rate. In Ref. [1], the unsteady lift spectrum and
the harmonic content rate generated by the control obstructions are indirectly estimated from experimental
acoustic pressure measurement.

To optimize the geometry of a control obstruction, the rotor blade geometry must be known. Then,
assuming that the wake generated by the obstruction is Gaussian, the geometrical characteristics of the
obstruction can be optimized. Conversely, geometry of rotor blades (mainly the chord and the sweep as a
function of the radius) can be optimized by imposing a control obstruction geometry.

Further optimization of the obstruction/blade geometries could include some of the effects neglected in this
paper. A second-order analysis could be investigated to take the blade camber and the mean flow angle of
incidence into account [14]. Moreover, the developments of Filotas [11] or Mugridge [12] could be used to take
into account non-transversal velocity profiles (e.g. derived from experimental or numerical prediction).
Computational fluid dynamics (CFD) approaches could be used to refine the estimation of the pressure
distribution on complex geometry blades, as proposed by Lu [17] or Maaloum [20]. CFD can also be useful to
evaluate the non-stationary part of the flow.
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